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Extending our previous study on the equilibrium structures of the major isotopologues of the water molecule
(Császár et al. J. Chem. Phys. 2005, 122, 214305), temperature-dependent averaged structural parameters
(for example, rg- and ra-type distances, their related root-mean-square amplitudes, and moments corresponding
to the probability distribution functions of interatomic distances), effective rotational constants, and low-
order vibration-rotation interaction constants have been determined for two major symmetric isotopologues
of water, H2

16O and D2
16O. The nuclear motion treatments employed full quantum mechanical variational

procedures which utilized the accurate adiabatic semiglobal PESs of water isotopologues named CVRQD
(Barletta et al. J. Chem. Phys. 2006, 125, 204307). The temperature-dependent molecular structural parameters
are based on expectation value computations and Boltzmann averaging in the temperature range 0-1500 K.
The precise computed average internuclear, inverse internuclear, rms amplitude, and anharmonicity parameters
could support a future gas electron diffraction (GED) investigation, though water isotopologues are far from
being ideal species for GED analyses. Using a clearly defined and general formalism applicable to molecules
of any size, we have evaluated vibrationally averaged effective rotational constants as expectation values
using inertia tensor formulas in the Eckart frame for vibrational states of H2

16O and D2
16O. While such

variationally determined rotational constants do not correspond strictly to constants resulting from fits performed
by spectroscopists, the expected good agreement is found for the A and B rotational constants for both
isotopologues. Low-order vibration-rotation interaction constants, the so-called r- and γ-constants, have
also been determined from the computed rotational constants; the latter were derived for the first time.

1. Introduction

Since the advent of quantum mechanics, perturbative tech-
niques have been playing a special and almost unique role in
the development of molecular structure determination and in
theoretical molecular spectroscopy, including the interpretation
of the complex rotational-vibrational spectra of semirigid
molecules. Although perturbation theory (PT) can be used to
different orders,1 traditional applications of PT in these areas
have been restricted to first and second order.

Vibrational perturbation theory carried out to second-order
(VPT2)2-9 is still fundamental to the everyday practice of
experimental and theoretical high-resolution spectroscopists,
especially when dealing with molecules having more than about
four-six atoms. The formulas derived within VPT are usually
rather complex and some of them are somewhat involved to
determine. Nevertheless, once perturbative expressions for the
so-called spectroscopic molecular constants are derived and
programmed, their use requires no significant computational
effort.6,7 This and their apparent precision contributed consider-
ably to their widespread application. Despite the usefulness of
PT formulas for most systems of practical interest, there are
some molecular systems where they do break down. These
include highly fluxional species “with no structure”, such as
CH5

+ 10 and NO3.11 Then, there are cases of intermediate success
exemplified by the small and light systems H3

+ 12,13 and H2O,14,15

where VPT does not provide an accurate tool for the interpreta-

tion of the measured rovibrational spectra. In these cases, as
well as in others where higher accuracy is required from theory,
high excitations in the spectra are investigated, the molecule is
simply too light, or multiple minima can easily be accessed
under the experimental conditions, use of more sophisticated
but computationally much more expensive variational quantum
mechanical nuclear motion techniques come to the rescue and
provide “exact” results within a given potential energy surface
(PES).

Experimental investigation of molecular structures of small
molecules has also been based on approximate PT approaches
and usually on the use of simple normal coordinates or diatomic
paradigms, like the Morse oscillator,16 for the description of
the (anharmonic) vibrations. Furthermore, the effect of overall
molecular rotation, if treated at all due to its small magnitude
at low temperatures, was included in structural studies through
simple classical expressions.17 Following some pioneering
studies,3,18,19 the work of Reitan,20 Morino,21,22 Kuchitsu,23-26

Bartell,27-32 Herschbach,33,34 Mills,26,35 Watson,36-38 and others39

started more than 50 years ago resulted in formulas that have
been used ever since to determine averaged, sometimes tem-
perature-dependent structural parameters from gas electron
diffraction (GED) and rotationally resolved spectroscopy mea-
surements. There have also been attempts, with rather limited
success,28,40-42 to determine equilibrium structures based on the
diffraction of high-energy electrons on molecules. Microwave
(MW) spectroscopy has been considerably more successful in
yielding precise equilibrium structural parameters; the seemingly
best technique leads to what is often called nowadays a
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semiexperimental equilibrium structure.43-48 This technique can
be used to approximate the equilibrium structures of molecules
of the size of amino acids, like glycine46 and proline,47 if precise
experimental rotational constants are available for a sufficient
number of isotopologues. Excellent reviews exist which sum-
marize the perturbational and other approximate approaches of
this field,44,48 which is thus usually considered as mature.

The possibility of the computation of exceedingly accurate
adiabatic ab initio PESs for small molecules49-51 means that
determination of equilibrium structures to a precision exceeding
that of most experiments can be achieved by quantum theory.
For a recent example see the investigation of the equilibrium
structures of water, reported in the predecessor of this paper.52

Recent developments in the techniques treating nuclear motion
(see, e.g., refs 10 and 53-56) mean, furthermore, that variational
studies employing exact kinetic energy operators are not limited
any more to small, three- and four-atomic, systems but can be
extended to somewhat larger ones including those having large
amplitude motion over several minima that can be accessed even
at relatively low temperatures. These new developments are
expected to result in a renewed interest in the computational
structural and spectroscopic studies of “difficult” molecular
systems.

The present study, with an eye on similar studies on larger
systems, was designed to investigate carefully how the direct
quantum mechanical route allows us to move from “static”,
purely theoretical equilibrium results to quantities closer in spirit
to measurable ones, such as effective and temperature-dependent
parameters. Furthermore, as an application, we are providing
highly accurate, benchmark-quality data to measurable temper-
ature-dependent effective structures and spectroscopic molecular
constants of water. Water was chosen as the model compound
of this study for the following reasons: (a) it is perhaps the only
polyatomic and polyelectronic molecule for which unusually
precise semiglobal ab initio49,51 (and empirical adiabatic57) PESs
are available; (b) it is a simple bent triatomic molecule amenable
to rigorous treatments for both its electronic and nuclear
motions; (c) it is known (see, e.g., ref 14) that perturbation
theory in its simplest form does not work well for water; (d)
being one of the most important molecules that is also easy to
handle experimentally, water has been studied in great detail
both by spectroscopy58-74 and by gas electron diffraction,75

providing critical anchors when theoretical and experimental
results are compared. In a sense, the present study is a
continuation of the investigations of Fink and co-workers from
the early 1980s on the vibrationally averaged, temperature-
dependent structures of CO2,76 SO2,77 and N2O,78 but using state-
of-the-art computational technology and a much lighter system
for which the perturbational techniques used there are clearly
insufficient. Note that variational nuclear motion treatments
related to GED have also been performed at about the same
time by Hilderbrandt and Kohl79,80 for SO2 and CO2.

2. Computational Details

2.1. Electronic Structure Calculations. The adiabatic
(mass-dependent) CVRQD PESs49,51 of the water molecule,
generated according to the composite focal-point analysis
(FPA) approach81,82 and employed extensively in this study,
are built upon a number of component parts: a complete basis
set valence-only (V) surface obtained by extrapolating large
basis set internally contracted multireference configuration
interaction (ICMRCI) calculations keeping the oxygen 1s
orbital frozen, a core-core and core-valence correlation
surface to correct for the frozen oxygen 1s orbital in the

ICMRCI calculations (C), relativistic correction surfaces to
the electronic kinetic energy and Coulomb interactions
(R),83,84 a quantum electrodynamic (QED) correction surface
(Q),85 and an adiabatic or diagonal Born-Oppenheimer
(DBOC) correction surface (D).49,86

2.2. Nuclear Motion and Rovibrational Averaging Cal-
culations. The six-dimensional variational rovibrational calcula-
tions and the rovibrational averagings of this study have been
performed with the DOPI3R package.87,88 DOPI3R is based on
one of the simplest possible strategies to compute rovibrational
eigenpairs employing a complete, tailor-made triatomic molec-
ular Hamiltonian: the Hamiltonian is expanded in orthogonal
(O), e.g., Jacobi89 or Radau,90 internal coordinates {R1, R2,
Θ},91,92 its matrix, HDVR, is represented by the discrete variable
representation (DVR)93-100 coupled with a product (P) basis,
where there is no direct coupling between the radial and angular
basis functions, and advantage is taken of the sparsity and special
structure of the resulting Hamiltonian matrix whose required
eigenvalues and eigenvectors can thus be computed extremely
efficiently by variants of iterative (I) techniques, in the present
case the Lanczos method.101 The eigenvectors given in a grid
representation can be simply employed for computing expecta-
tion values through eq 1; vide infra.

To cover the temperature range 0-1500 K during thermal
averaging, rovibrational computations had to be performed up
to at least 10 000 cm-1 above the zero-point energy level. In
this study complete rovibrational energy levels, wave functions,
and the required expectation values were computed up to 15 000
and 11 000 cm-1 for H2

16O and D2
16O, respectively, using

nuclear masses. The ab initio database generated contains 18 486
(24 415) rovibrational energies, the number of vibrational (J )
0) levels is 64 (61), and the computations had to be performed
up to J ) 39 (45) for H2

16O (D2
16O), where J is the rotational

quantum number. The efficiency of the DOPI3R package,
employing exact kinetic energy operators, is demonstrated by
the fact that a large number of converged rovibrational
computations could be performed in a matter of days on a
standard personal computer.

Computation of the vibrationally averaged rotational constants
in the Eckart frame was performed with both the DOPI3R87,88

and DEWE53 algorithms and packages, where DEWE stands
for DVR representation of the Eckart-Watson Hamiltonian with
an exact inclusion of the PES. The results reported herein
correspond to those obtained with DOPI3R and employing
nuclear masses for the vibrational computations and atomic
masses for computing rotational constants. Note that singularities
associated with linear configurations hinder the computation of
vibrationally averaged rotational constants in both procedures.
The wave functions in DOPI3R can be fully converged for all
bound states but the formulas for A and B are singular at linear
structures. In the case of DEWE, even the wave functions
corresponding to excited bending states cannot be converged
due to the well-known singularity problem of the Eckart-Watson
Hamiltonian.

3. Theoretical Background

3.1. Variational Averaging. Computation of average spec-
troscopic parameters, including temperature-dependent rovi-
brationally averaged structural parameters and vibrationally
averaged rotational constants, using quantum chemical
techniques constitutes several challenges. For perturbative
treatments, accurate equilibrium values of these quantities
must be available, obtained from electronic structure com-
putations. As to the accurate equilibrium structures and
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equilibrium rotational constants of the water molecule, these
were recently investigated by us52 on the basis of the same
high-quality CVRQD PESs49,51 used in this study. Next,
one must be able to compute average properties, which can
be done via different variational or perturbational routes. For
some average quantities an added difficulty is to compare
computed and experimental effective parameters as the true
meaning of the latter may not be fully evident.

The variational technique to deduce (ro)vibrationally averaged
properties is based on simple expectation value computations,
where the (ro)vibrational wave functions obtained from varia-
tional (or nearly variational) nuclear motion computations are
employed to determine expectation values of the given molecular
property. The variational technique has several advantages. The
function f, which describes a molecular property, can be given
as an arbitrary function of the internal coordinates. Therefore,
it is not required to give the form of f in a Taylor series
expansion. The variational vibrational computations provide
converged energy levels with the corresponding accurate wave
functions. These numerically exact wave functions can be
employed for expectation value computations providing exact
vibrationally averaged properties. It must also be stressed that
the variational technique allows computation of properly rovi-
brationally averaged properties, artificial separation of the
vibrational and rotational degrees of freedom is not necessary.

As noted, determination of the expectation value of an
arbitrary function f requires the computation of the integral
〈ΨVJτ|f|ΨVJτ〉, where V and Jτ stand for the usual vibrational and
rotational labels (approximate or good quantum numbers),
respectively, and here V is a collective index of normal-mode
quantum numbers n1, n2, and n3, representing the symmetric
stretch, bend, and antisymmetric stretch motions of water,
respectively, J is a “good” quantum number corresponding to
the overall rotation of the molecule, and τ ) Ka - Kc, where
Ka and Kc have their usual meaning, i.e., the values of |K| for
the limiting prolate and oblate symmetric rotor limits, respec-
tively, with which the particular level correlates. Computation
of this multidimensional integral becomes especially simple
when one works in the discrete variable representation93-100 of
the rovibrational Hamiltonian. For a triatomic molecule, com-
putation of expectation values of a function f(R1,R2,cos Θ) in a
DVR representation is given simply as

where the matrix C contains the eigenvectors of HDVR, (0/1)
refers to (odd/even) parity, N1, N2, and L are the number of the
R1-, R2-, and Θ-dependent DVR basis functions, respectively,
and rn1

, rn2
, and ql K are the grid points (for further details, see

refs 87 and 88). It is important to emphasize that during
rovibrational averaging one can take advantage of the fact that
the f function does not depend on the Euler angles that describe
the overall rotation of the molecule.

The effect of temperature can be taken into account by simple
Boltzmann averaging, for an application see eqs 2 and 3 below.

3.2. Temperature-Dependent Rovibrationally Averaged
Structural Parameters. At the dawn of modern structural
chemistry, especially in the 1960s, it was difficult to compare
structural parameters obtained by different gas-phase experi-
mental techniques (see, e.g., the discussions in refs 21-29 and
44). The main difficulty lay in the different vibrational averages

the usual distance definitions characterizing the experimental
spectroscopic and diffraction techniques represent. Let us
summarize briefly the structure types that have a clear physical
meaning and are most relevant for this study.

The equilibrium structure, represented as re, is a purely
theoretical construct and accurate Born-Oppenheimer (BO) and
adiabatic values, re

BO and re
ad, respectively, can be obtained from

a judicious use of modern correlated electronic structure
techniques.52 The re distances correspond to minima on the
respective PESs and represent the distances between equilibrium
nuclear positions. The rz structure, where z stands for zero-
point, is the structure that belongs to the average nuclear
positions in the ground vibrational state and, thus, by definition,
has no temperature dependence. Next, the two distance types
of central importance to this study are discussed, rg,T and ra,T,
where g stands for “center of gravity”, rg,T denotes the thermal
average value of an rg-type internuclear distance at temperature
T, and the definitions are

and

In these expressions E0 is the vibrational zero-point energy, EVJτ’s
are the (ro)vibrational energies determined in a variational
computation, k is Boltzmann’s constant, and the averaging uses
the corresponding wave functions determined in the same
variational computation. The variational computation of different
powers of structural parameters, e.g., 〈r〉VJτ, is described as
follows. First, r has to be given as a function of the orthogonal
(Jacobi or Radau) coordinates, r(R1,R2,cos Θ). For example, in
the case of Jacobi coordinates, R1 represents a diatomic distance
(one of the two OH distances of water) and mO and mH are the
nuclear masses; therefore, in this case r(R1,R2,cos Θ) ) R1 and
r(R1,R2,cos Θ) ) {[mO/(mO + mH)]2R1

2 + R2
2 - [2mO/(mO +

mH)]R1R2 cos Θ}1/2 for the OH and HH distances, respectively.
Second, one can simply use eq 1 for calculating the expectation
values: 〈r〉VJτ ) 〈r(R1,R2,cos Θ)〉VJτ. Gas electron diffraction, for
example, results principally in ra,T and rg,T structures that can
deviate substantially from the equilibrium re structures and from
each other. In this work, expectation value symbols will be
retained to denote variationally computed expectation values
of structural parameters. Thus, vibrationally averaged distances
〈r〉V correspond to the Vth vibrational state and rovibrationally
averaged distances 〈r〉VJτ correspond to the rovibrational state
characterized by the labels V and Jτ.

Next, a few words about rotational contributions to effective
distances. The traditional way to incorporate rotational motion
in the distance definition goes through a classical mechanical
approximation,17,22 which gives a linear temperature dependence
in the rotational contribution to the averaged distance,

〈f(R1,R2,cos Θ)〉VJτ
) ∑

n1,n2,l)1,K)(0/1)

N1,N2,L,J

(CKn1n2l,VJτ
)2f(rn1

,rn2
,ql

K)

(1)

rg,T )
∑
VJτ

〈r〉VJτ
e-(EVJτ-E0)/kT

∑
VJτ

e-(EVJτ-E0)/kT
(2)

ra,T )
∑
VJτ

e-(EVJτ-E0)/kT

∑
VJτ

〈1/r〉VJτ
e-(EVJτ-E0)/kT

(3)

〈δr〉rot
T ) σT (4)

Structural Parameters of the Water Molecule J. Phys. Chem. A, Vol. 113, No. 43, 2009 11667



The variational technique provides an alternative, fully quantum
mechanical way to deal with the rotational contribution through
exact rovibrational computations, as given in eqs 2 and 3.

Finally, a few words about other distance types not directly
relevant for this study. The r0 distances are determined from
effective ground-state rotational constants (like B0

�, where � )
a, b, c are the inertial axes) obtained from spectroscopic [usually
microwave and millimeterwave] measurements. The contribu-
tions of the zero-point vibrations to B0

� often cause inconsisten-
cies and anomalies in the r0 distances determined. Therefore,
various strategies have been advanced to cure such problems.
For example, an rs, so-called substitution, structure determination
has been developed by spectroscopists.102-104 It has no clear
physical meaning and thus it is considered no further in this
study. The mass-dependence molecular structures, rm

(1) and rm
(2)

of Watson,38 provide another set of estimates to the true
equilibrium structures of molecules but these again are not
considered here further. It is only mentioned that empirical rs-
type,105 rm

(2)-type,38 and rz-type26 estimates of the equilibrium
structure of the water molecule have been reported.

3.3. Vibrationally Averaged Rotational Constants. Effec-
tive rotational constants, incorporating vibrational averaging,
are the principal structural results obtained from fitting ap-
propriate rovibrational Hamiltonians to usually MW and MMW
but also infrared (IR) spectroscopic data. The average rotational
constants AV, BV, and CV, determined experimentally, correspond
to the Vth vibrational state. “Experimental” rotational constants
of water can differ appreciably, on the order of 0.1 cm-1 with
maximum deviations around 0.3 cm-1, from each other, depend-
ing principally on the type of Hamiltonian used for their
determination and the input set of energy levels. One can
determine vibrationally averaged rotational constants based on
theoretical computations basically in two ways.

The traditional route goes through VPT2 formulas.2-8 The
effective rotational constants, for example the constant B of a
nonlinear triatomic molecule, in the V-th vibrational state, having
(n1 n2 n3) quanta in the three vibrational modes, depend on the
equilibrium constants and are given by expressions of the form

where di denote degeneracies and r, the so-called vibration-
rotation interaction constants, can be obtained through simple
formulas from a cubic normal-coordinate force field expansion
of the potential,6,7 while γ is the next higher-order analogue
for which similar formulas have also been derived.106 There are
only very few cases where the γ constants have been determined
experimentally; these include mostly linear molecules. It is
generally accepted that the r constants are reliable if the γ
constants are about 2 orders of magnitude smaller (in these cases
the r’s are also about 2 orders of magnitude smaller than the
rotational constants).

The second route, more to the heart of the present work,
computes effective spectroscopic constants, including rotational
constants, as expectation values employing (ro)vibrational wave
functions from variational nuclear motion calculations. This
route is discussed in some detail below.

An effective rotational Hamiltonian used in the evaluation
of high-resolution rotation-vibration experiments107 may have
the form of, for instance,

where AV, BV, CV, and TV
�γ (�, γ ) x, y, z) are so-called

spectroscopic constants corresponding to a given vibrational
state V. To predict effective spectroscopic constants from
variational nuclear motion computations, one should mimic the
procedure used by spectroscopists leading to effective rotational
Hamiltonians. Such a procedure was suggested, for example,
by Lukka and Kauppi.108 Within their proposed algorithm one
has to (a) start from an arbitrary (hopefully exact) rotation-
vibration Hamiltonian, (b) compute vibration-only wave func-
tions, (c) carry out vibrational averaging of the total rotation-
vibration Hamiltonian using the computed wave functions, and
(d) use a series of numerical contact transformations to convert
the effective Hamiltonian to the expected form given in eq 6.
While this procedure is certainly a very useful though hardly
explored one to bridge high-quality theory and experiment, it
is not followed here.

A more straightforward and simpler theoretical route is
followed in which the Eckart frame18 is used in the variational
computations. It should be stressed at the outset that this route
does not lead to constants that can be compared directly with
experimental effective spectroscopic constants but provides a
theoretically sound starting point for such comparisons. The
choice of the Eckart frame means that the rotation-vibration
interaction is zero at the reference structure and it is very small
close to the reference structure. (Note that it is impossible to
define a frame in which the rotation-vibration interaction
vanishes over a finite region of the configuration space.109) The
use of the Eckart frame is one of the best choices if maximal
rotational-vibrational separation is to be achieved, the coupling
terms are small for lower vibrational excitations of not too wide-
amplitude motions. Using the Eckart frame and universally
defined rectilinear internal coordinates (normal coordinates), the
rotation-vibration Hamiltonian can be simplified to the
Eckart-Watson form110

with volume element dQ1dQ2...dQ3N-6 sinθ d� dθ d	, where
�, θ, and 	 are the Euler angles. Rectilinear internal (normal)
coordinates are specified as

where mi is the mass associated with the ith nuclei, ciR

corresponds to the nonlinear reference structure, and xiR are the
instantaneous Cartesian coordinates in the Eckart frame. The
usage of the Eckart frame and the orthogonality requirement of
Watson imposes the following conditions on the elements liRk

specifying the actual rectilinear internal coordinates

BV ) Be - ∑
i)1

3

Ri
B(ni + di/2) + ∑

igj

3

γij
B(ni + di/2)(nj + dj/2) + ...

(5)

Ĥeff,V
rot ) AVĴx

2 + BVĴy
2 + CVĴz

2 + ∑
�γ

TV
�γ(Ĵ�

2 + Ĵγ
2)2 + ...

(6)

Ĥvib-rot ) 1
2 ∑

R�
(ĴR - π̂R)µR�(Ĵ� - π̂�) + 1

2 ∑
k)1

3N-6

P̂k
2 -

p2

8 ∑
R

µRR + V (7)

Qk ) ∑
i)1

N

∑
R�γ

√miliRk(xiR - ciR) k ) 1, 2, ..., 3N - 6

(8)
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In eq 7, P̂k ) ip∂/∂Qk (k ) 1, 2, ..., 3N - 6), Ĵx, Ĵy, and Ĵz are
the components of the total angular momentum, π̂R )
Σkl)1

3N-6ςkl
RQkP̂l is the Coriolis coupling operator, µR� ) (I′-1)R� is

the generalized inverse inertia tensor, I′R� ) IR� -
Σklm)1

3N-6 ςkm
R ςlm

� QkQl is the generalized inertia tensor, and ςkm
R )

eR�γΣi)1
N li�kliγm, where eR�γ denotes the Lévi-Civitá symbol. The

vibration-only part of the Eckart-Watson operator has the form

Let us denote the eigenvalues and eigenvectors of Ĥvib by EV
vib

and ψV
vib, respectively. By use of the vibrational eigenfunctions,

effective rotational operators can be produced by averaging
Ĥvib-rot for each vibrational state as

where the notation 〈Ô〉V ) 〈ψV
vib|Ô|ψV

vib〉 was used for convenience.
For any triatomic molecule, if the Eckart reference structure

is expressed in the principal axis frame and the reference lies
in the x-y plane, π̂x ) π̂y ) 0 and µxz ) µzx ) µyz ) µzy ) 0,
thus the Vth effective rotational operator simplifies to

In what follows the second and fourth terms, corresponding
to the Coriolis coupling and the off-diagonal rotational terms,
respectively, are not considered, thus

Using this form, the spectroscopic constants, called rotational
constants, are estimated as

Due to their construction, for lower vibrational states these
estimates are expected to perform quite well. Nevertheless,
neglect of the Coriolis coupling will affect the computed C

constants, corresponding to the out-of-plane axis, making them
incompatible with the experimental effective rotational constants.

Next, computation of the vibrationally averaged diagonal
elements of the generalized inverse inertia tensor must be
considered. If the DEWE protocol and program53 is used, the
generalized inverse inertia tensor, µR�(Q1, Q2, ..., Q3N-6) (R, �
) x, y, z) is evaluated at every quadrature point; thus if the
vibrational wave functions are also evaluated, the computation
of the required AV, BV, and CV estimates from eq 14 is
straightforward. To compute the elements of the generalized
inverse inertia tensor using arbitrary internal coordinates for
triatomic or larger molecules, the following steps must be
followed. First, the masses associated with the nuclei and the
reference structure fixing the Eckart frame must be defined. It
is best to orient the reference structure as dictated by the
principal axes of the system. Second, the Cartesian coordinates
are to be evaluated in terms of the instantaneous internal
coordinates in an arbitrary frame, e.g., by using a Z-matrix
reader. Third, the instantaneous Cartesian coordinates are
transformed, by constructing an appropriate rotational matrix,
to Eckart coordinates, which fulfill the Eckart conditions. Fourth,
an l matrix must be constructed meeting the requirements given
in eq 9, and rectilinear internal coordinates, Qk (k ) 1, 2, ...,
3N - 6), must be evaluated by using eq 8. Fifth, elements of
µR� are computed according to formulas given below eqs 9.

Thus, DEWE-type algorithms can compute effective rotational
constants for semirigid molecules of arbitrary size using the
procedure just described. For triatomic molecules or atom-linear
molecule complexes, Ernesti and Hutson111 presented explicit
formulas for the same expectation value computations. Their
formulas are expressed in terms of Jacobi coordinates, often
used by tailor-made triatomic variational nuclear motion codes
such as DOPI3R,87,88 and take proper account of the Eckart
conditions. These formulas, in their full form including what
Ernesti and Hutson called Coriolis contribution, have been
programmed into DOPI3R and they resulted in exactly the same
effective rotational constants as obtained with DEWE. The
arguments given above explain why the C rotational constants
computed by Ernesti and Hutson for Ar-CO2 deviate from their
eigenvalue fitting counterparts while the A and B constants show
excellent agreement.

4. Results and Discussion

The computational structural results of this study are sum-
marized in Tables 1-3. Table 1 contains various vibrationally
averaged distance and angle parameters. Following Herschbach
and Laurie,33 the distance types, contained in Table 1, related
to 〈r〉, 〈r-1〉, 〈r2〉, 〈r-2〉, 〈r3〉, and 〈r-3〉 will be denoted as “mean”,
“inverse”, “rms”, “effective”, “cubic”, and “inverse cubic”,
respectively. Of course, these definitions can be extended to
angles, as well. In general, the averages may represent thermal
averages over a Boltzmann (ro)vibrational distribution or
averages in any (ro)vibrational state. The temperature depen-
dence of the rg (mean internuclear) and ra (inverse internuclear)
distances is given in Table 2, up to 1500 K, based on
variationally computed wave functions and Boltzmann averaging
as given in eqs 2 and 3. Table 3 contains parameters related to
GED structural studies, namely root-mean-square (rms) ampli-
tudes (lg) and κ anharmonicity parameters, again up to 1500 K.
Some of the structural results of this study are also presented
graphically; see Figures 1-4. First-principles vibrationally
averaged rotational constants of this study, obtained in the Eckart
system, are given in Tables 4 and 5 for H2

16O and D2
16O,

respectively. Table 6 contains vibration-rotation interaction

∑
i)1

N

lik
Tlil ) δkl ∑

i)1

N

√milik ) 0 ∑
i)1

N

√mici × lik ) 0

(9)

Ĥvib ) 1
2 ∑ π̂

R�
RµR�π̂� + 1

2 ∑
k)1

3N-6

P̂k
2 - p

2

8 ∑
R

µRR + V

(10)

〈Ĥvib-rot〉V ) EV
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ĴR〈µR�〉VĴ�
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1
2 ∑

R
〈µRR〉VĴR
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2
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constants of different order for the H2
16O isotopologue. The

normal-mode labels used in Tables 1, 4, and 5 correspond to
those given in refs 112 and 113.

4.1. Structural Parameters. As clear from Table 1, vibra-
tional averaging based on variationally computed wave functions
can be performed using arbitrary functions of the internuclear
coordinates r and these yield significantly different results for
different powers of r. The average OX distances (X ) H or D)
based on different moments deviate substantially from each
other. As suggested by simple perturbative estimates, the order
of the distances is 〈r3〉1/3 > 〈r2〉1/2 > 〈r〉 > 〈r-1〉-1 > 〈r-2〉-1/2

> 〈r-3〉- 1/3 > re. It is noteworthy that while the equilibrium OH
and OD bond lengths in the adiabatic approximation are almost
the same, differing from each other only by 0.000 02 Å,52

〈r(OH)〉0 is longer than 〈r(OD)〉0 by a substantial 0.004 88 Å,
where 〈r〉0 denotes the vibrational ground state. At the same
time, the 0.01° difference in the equilibrium HOH and DOD
bond angles changes very little: it increases only to 0.02° in
the ground vibrational state. It is thus remarkable how fast the
average bond angle increases with the n2 bending quantum
number. For the (0 4 0) vibrational state the HOH and DOD
bond angles open up by 6.5° and 4.0°, respectively, resulting
in an angle larger than the tetrahedral angle in the former case.
The regularities in 〈∆R(HOH)〉 and 〈∆R(DOD)〉 on the bending
and stretching excitations can clearly be seen on the two panels
of Figure 1. Remarkably, if the bending mode is excited above
the barrier to linearity,114,115 the average bond angle starts
decreasing. The isotopic effect on the effective bond angle is
also quite remarkable, in many cases considerably more
pronounced than that for the bond length.

Traditionally, chemists interested in the structures of mol-
ecules in the gas phase often employed perturbation theory (PT)
and arguments based on the Morse oscillator approximation to
understand and model anharmonic vibrations of molecules. The
principal advantage of the Morse potential, V(x) ) D[1 -
exp(-ax)]2, where D is the dissociation energy, for GED studies
was that it allowed the treatment of the anharmonic vibrations
of all internuclear distances in terms of a single Morse
parameter, a. Simple perturbative arguments suggest that 〈x〉 )
3/2a〈x2〉 or more precisely, going to higher order, 〈x〉 ) 3/2a〈x2〉
- 7/6a2〈x3〉, where x ) r - re. The present results show the
approximate validity of these simple and often used approxima-
tions over the different vibrational states. Nevertheless, the
bonded a/Å-1 values that can be deduced for the different
vibrational states of H2

16O(D2
16O) cover the region from 2.10

(2.19) [for the (1 0 0) state] to 2.93 (3.17) [for the (0 4 0) state].
Furthermore, as Bartell showed,27 the approximate relation based
on PT between ra and rg is ra ) rg - lg

2/r, where lg ) (〈r2〉 -
〈r〉2)1/2 is the root-mean-square (rms) amplitude. As the data in
Table 1 demonstrate, this relationship holds very well. It is
interesting to note also that the rg,0 - ra,0 difference is
accidentally basically the same as the rg,0(OH) - rg,0(OD)
isotopic effect.

Next, let us discuss the computed data related to GED
experiments, performed for water by Shibata and Bartell75 more
than 40 years ago. The experiments were executed at 29 °C,
which is approximated as 300 K here. The temperature-
dependent quantities ra (rg), lg

2, and κ are the three kinds of
adjustable parameters that can be refined during conventional
GED structure analyses. Note that Shibata and Bartell did not
include κ’s in their structural refinements. The ra (rg) parameters
of the present study have already been discussed at some length,
the 300 K values can be found in Table 2. In Table 2 of ref 75,
GED parameters obtained from the radial distribution curve andT
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from a “smooth atomic background” are given. These deviate
substantially from each other, background variations resulted
in changes as large as 0.004 Å for H2

16O. The final results of
Shibata and Bartell,75 called “derived parameters”, are given in
their Table 3, and these will be used for comparison in what
follows. These GED-derived structural parameters for the
bonded atoms agree very well with the much more precise, and
presumably accurate, ab initio estimates of this study. The GED
(ab initio) ra(OH) and rg(OH) results are 0.9716 (0.9714) and
0.9763 (0.9763) Å, respectively. Given that the GED uncertain-
ties were said to be75 of the order of 0.003 Å, the agreement
seems fortuitously good. The same numbers for ra(OD) and
rg(OD) are 0.9664 (0.9678) and 0.9700 (0.9714) Å, respectively,
which still represent excellent agreement. As expected, due to
the small scattering power of H (and D), the agreement for the
HH and DD structural parameters is much worse. The GED
(ab initio) ra(HH) and rg(HH) results are 1.559 (1.5296) and
1.567 (1.5381) Å. With the moments obtained in this study and
presented in Table 1, the mean-square amplitudes can be given
as lg

2 ) 〈(x - 〈x〉)2〉 ) 〈x2〉 - 〈x〉2 ) 〈r2〉 - 〈r〉2. One obtains the
following mean-square amplitudes at 300 K, lg,300(OH) ) 0.0690
Å and lg,300(OD) ) 0.0586 Å. These values can be compared
with their experimental, 302 K counterparts determined by

Shibata and Bartell, 0.067(3) and 0.056(2) Å, respectively, and
thus they show good agreement. This is especially so if one
notes the uncertainty of the experimental lg values and that it
has been estimated that the finite sample size may result in
corrections to the experimental rms amplitudes on the order of
0.01 Å.116

As the data presented in Tables 2 and 3 show, the variational
computations performed in this study allow high-quality predic-
tions for all the important parameters which could be determined
in a set of temperature-dependent GED experiments. In Table
2, rg- and ra-type distances are given for the OX and XX (X )
H or D) distances. The distances in the J g 0 column should
be compared to the experimental values if they were ever
determined. As clear from this table and from the associated
Figure 2, the change in the OH(OD) bond lengths between room
temperature (300 K) and even 1500 K is significant but not
large, about 0.004 (0.005) Å. In GED it is usual to define the
so-called anharmonicity parameter as κ = 1/6(〈x3〉 - 3〈x〉〈x2〉)
(or in the simplest case κ = 1/6〈x3〉).23 The temperature
dependence of the lg and κ parameters, as well as the rotational
contributions to these parameters, can be followed in both Table
3 and Figure 3. Unfortunately, even given the higher quality of
modern GED experiments as compared to what was feasible

TABLE 2: Temperature Dependence of the Average Internuclear (rg) and Inverse Internuclear (ra) Structural Parameters (in
Å) of the H2

16O and D2
16O Moleculesa,b

rg(OH) rg(HH) rg(OD) rg(DD)

T/K J ) 0 J g 0 J ) 0 J g 0 J ) 0 J g 0 J ) 0 J g 0

0 0.97565 0.97565 1.53823 1.53823 0.97077 0.97077 1.53128 1.53128
100 0.97565 0.97584 1.53823 1.53819 0.97077 0.97096 1.53128 1.53125
200 0.97565 0.97605 1.53823 1.53815 0.97077 0.97116 1.53128 1.53122
300 0.97566 0.97625 1.53824 1.53812 0.97077 0.97136 1.53129 1.53122
400 0.97566 0.97646 1.53825 1.53810 0.97079 0.97158 1.53133 1.53125
500 0.97568 0.97669 1.53830 1.53812 0.97084 0.97183 1.53142 1.53132
600 0.97571 0.97692 1.53837 1.53817 0.97091 0.97211 1.53157 1.53145
700 0.97577 0.97718 1.53849 1.53825 0.97103 0.97242 1.53178 1.53163
800 0.97584 0.97747 1.53865 1.53838 0.97119 0.97279 1.53205 1.53188
900 0.97595 0.97778 1.53886 1.53856 0.97141 0.97321 1.53240 1.53220
1000 0.97609 0.97813 1.53913 1.53879 0.97167 0.97368 1.53282 1.53259
1100 0.97627 0.97852 1.53945 1.53907 0.97197 0.97420 1.53330 1.53303
1200 0.97648 0.97895 1.53982 1.53940 0.97232 0.97476 1.53384 1.53353
1300 0.97674 0.97942 1.54026 1.53978 0.97271 0.97536 1.53444 1.53408
1400 0.97702 0.97993 1.54075 1.54022 0.97313 0.97600 1.53508 1.53467
1500 0.97735 0.98048 1.54129 1.54070 0.97358 0.97666 1.53578 1.53529

ra(OH) ra(HH) ra(OD) ra(DD)

T/K J ) 0 J g 0 J ) 0 J g 0 J ) 0 J g 0 J ) 0 J g 0

0 0.97079 0.97079 1.52968 1.52968 0.96724 0.96724 1.52524 1.52524
100 0.97079 0.97098 1.52968 1.52963 0.96724 0.96743 1.52524 1.52521
200 0.97079 0.97118 1.52968 1.52960 0.96724 0.96763 1.52524 1.52519
300 0.97079 0.97138 1.52967 1.52956 0.96724 0.96783 1.52523 1.52516
400 0.97080 0.97159 1.52967 1.52953 0.96726 0.96805 1.52519 1.52511
500 0.97081 0.97181 1.52964 1.52948 0.96730 0.96829 1.52514 1.52505
600 0.97084 0.97204 1.52961 1.52941 0.96737 0.96856 1.52508 1.52497
700 0.97089 0.97230 1.52956 1.52934 0.96747 0.96885 1.52503 1.52491
800 0.97096 0.97257 1.52952 1.52928 0.96760 0.96919 1.52501 1.52487
900 0.97105 0.97286 1.52949 1.52922 0.96777 0.96956 1.52502 1.52486
1000 0.97117 0.97319 1.52947 1.52917 0.96798 0.96997 1.52507 1.52488
1100 0.97131 0.97354 1.52949 1.52915 0.96821 0.97042 1.52516 1.52494
1200 0.97148 0.97392 1.52953 1.52916 0.96848 0.97090 1.52528 1.52503
1300 0.97167 0.97433 1.52960 1.52919 0.96878 0.97140 1.52544 1.52516
1400 0.97190 0.97477 1.52970 1.52925 0.96910 0.97193 1.52563 1.52531
1500 0.97214 0.97523 1.52984 1.52935 0.96945 0.97247 1.52586 1.52548

a See footnote a to Table 1. The equilibrium structural parameters are req
ad(OH) ) 0.95785 Å, req

ad(HH) ) 1.51472 Å, req
ad(OD) ) 0.95783

Å, and req
ad(DD) ) 1.51460 Å. T is the temperature. J is the rotational quantum number and thus “J ) 0” refers to pure vibrational averaging

while “J g 0” corresponds to proper rovibrational averaging. b All the digits reported are significant under 1000 K, above it the results may
have an uncertainty of about (1-2) × 10-5 Å.

Structural Parameters of the Water Molecule J. Phys. Chem. A, Vol. 113, No. 43, 2009 11671



for Shibata and Bartell, it is not expected that the GED
experiments will show enough resolution to determine the
temperature dependence of the ra, rg, lg, and κ parameters of
water experimentally. A particular feature of the temperature
dependence of the HH and DD distances is that they go through
a minimum, at about 300-400 and 900-1100 K for rg and ra

types, respectively. It is unlikely that GED experiments will be
able to confirm the latter small systematic changes. A more
likely use of this information is to keep the HH and DD
distances constant over a large temperature range during the
GED structural analysis.

A further important conclusion of general relevance from
the data presented in Table 2 is that the constrained
vibrational (J ) 0) averaging does not yield correct bond
length increases even over a rather large temperature interval.
The J ) 0 averaging yields, for example, an rg(OH) distance
correction of 0.000 19 Å from 0 to 800 K, while the proper
rovibrational averaging yields a value an order of magnitude
larger, 0.001 82 Å. It is thus very fortunate that the rotational
distance corrections, due to their linear temperature depen-
dence and independence from vibrations, can be obtained
extremely simply from variational nuclear motion computa-
tions. A full quantum mechanical treatment seems unneces-
sary, just the linear factor in front of T must be determined
through a few simple and almost cost-free low-J rovibrational

computations, as verified by data presented in Table 2 and
Figure 4. The factors obtained by linear fit to the variationally
computed temperature-dependent δrg (δra) values, where
these symbols stand for the rotational contributions to the
two distance types at different temperatures, are 2.06 (2.04)
× 10-6 and 2.02 (2.00) × 10-6 Å/K for H2

16O and D2
16O,

respectively. The slight deviations probably reflect the
precision of the data and should not be taken literally. It is
also interesting to observe the behavior of the centrifugal
distortion term on the HH (and DD) distance (see Figure 4).
Clearly, the change over a rather large temperature range is
minuscule, almost negligible, but in contrast to the bonded
case, rotation results in a contraction of the nonbonding HH
distance. This contraction scales linearly with the temperature,
where the scaling parameter is isotopologue independent and
has the same value of -3.6 × 10-7 Å/K with an uncertainty
of 1 × 10-7 Å/K for the rotational contribution to both rg

and ra.
4.2. Spectroscopic Parameters. There are two important

spectroscopic parameters that the present study addresses: the
so-called rotational and the vibration-rotation interaction
constants.

Effective rotational constants are the principal structural
results obtained from fitting appropriate effective rovibra-
tional Hamiltonians to spectroscopic data. As to computa-

TABLE 3: Temperature Dependence of the Root-Mean-Square Amplitude, lg/Å, and the Anharmonicity, K/(10-6 Å3),
Parameters of the H2

16O and D2
16O Moleculesa

lg(OH) lg(HH) lg(OD) lg(DD)

T/K J ) 0 J g 0 J ) 0 J g 0 J ) 0 J g 0 J ) 0 J g 0

0 0.0690 0.0690 0.1142 0.1142 0.0586 0.0586 0.0958 0.0958
100 0.0690 0.0690 0.1142 0.1141 0.0586 0.0586 0.0958 0.0958
200 0.0690 0.0690 0.1142 0.1141 0.0586 0.0586 0.0958 0.0958
300 0.0690 0.0690 0.1142 0.1141 0.0586 0.0586 0.0960 0.0959
400 0.0690 0.0690 0.1143 0.1142 0.0586 0.0586 0.0965 0.0964
500 0.0690 0.0690 0.1147 0.1145 0.0586 0.0587 0.0974 0.0972
600 0.0690 0.0691 0.1153 0.1151 0.0587 0.0587 0.0986 0.0985
700 0.0690 0.0691 0.1161 0.1159 0.0588 0.0589 0.1002 0.1000
800 0.0691 0.0692 0.1172 0.1169 0.0590 0.0591 0.1020 0.1017
900 0.0692 0.0693 0.1184 0.1181 0.0593 0.0594 0.1040 0.1037
1000 0.0693 0.0695 0.1199 0.1195 0.0597 0.0598 0.1061 0.1057
1100 0.0695 0.0697 0.1214 0.1210 0.0602 0.0603 0.1084 0.1079
1200 0.0698 0.0700 0.1231 0.1226 0.0607 0.0609 0.1107 0.1102
1300 0.0701 0.0704 0.1249 0.1243 0.0613 0.0616 0.1131 0.1125
1400 0.0705 0.0708 0.1268 0.1261 0.0620 0.0623 0.1156 0.1148
1500 0.0709 0.0713 0.1288 0.1280 0.0627 0.0630 0.1180 0.1172

κ(OH) κ(HH) κ(OD) κ(DD)

T/K J ) 0 J g 0 J ) 0 J g 0 J ) 0 J g 0 J ) 0 J g 0

0 7.0 7.0 -1.7 -1.7 3.8 3.8 -0.2 -0.2
100 7.0 6.8 -1.7 -1.3 3.8 3.8 -0.2 -0.2
200 7.0 6.7 -1.7 -1.3 3.8 3.8 -0.2 -0.2
300 7.0 6.6 -1.8 -1.4 3.8 3.7 -0.3 -0.3
400 7.0 6.6 -1.9 -1.5 3.8 3.7 -0.6 -0.6
500 7.0 6.5 -2.3 -1.9 3.8 3.6 -1.2 -1.2
600 7.0 6.4 -2.9 -2.6 3.8 3.6 -2.0 -2.1
700 7.0 6.3 -3.9 -3.5 3.8 3.6 -3.3 -3.3
800 7.0 6.2 -5.3 -4.9 3.8 3.5 -4.9 -4.8
900 7.0 6.1 -7.1 -6.5 3.9 3.5 -7.0 -6.7
1000 7.0 6.0 -9.3 -8.6 3.9 3.4 -9.4 -8.9
1100 7.0 5.9 -12.0 -11.0 3.9 3.4 -12.3 -11.5
1200 7.0 5.8 -15.2 -13.8 4.0 3.3 -15.6 -14.4
1300 7.0 5.6 -18.9 -17.0 4.0 3.2 -19.4 -17.6
1400 7.0 5.5 -23.2 -20.7 4.0 3.1 -23.7 -21.2
1500 6.9 5.3 -28.0 -24.7 4.1 3.0 -28.5 -25.0

a See footnote a to Tables 1 and 2. The computed κ values are rather sensitive to the number of significant digits used for their
determination.
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tions, the direct route yields effective, strictly speaking
vibrationally averaged, rotational constants as expectation
values, employing vibrational wave functions from converged
variational nuclear motion calculations (see eq 14). It is
important to emphasize that pure vibrational wave functions
for triatomic molecules can be determined with relatively
little numerical effort. Note also that vibrational wave
functions can also be obtained for much larger systems,
perhaps up to 6-7 atoms with a complete kinetic energy
operator,53,54 though at a much larger expense.

Some of the vibrationally averaged computed rotational
constants of low-lying states up to the second decade of H2

16O
and D2

16O, given in Tables 4 and 5, respectively, can be
compared to experimental values taken from refs 61-74. It must
be noted that different treatments of the directly measured line
information result in noticeably different experimental rotational
constants for water. This is due to the fact that the effective
rotational constants depend not only on the extent of the
experimentally available line information but also on the choice
of the Hamiltonian, whether Watson-type or, e.g., Padé-Borel-
type Hamiltonians are employed, how many terms they include,
and whether resonances, e.g., pure vibrational Fermi or Coriolis
resonances, are taken into account.74 These choices introduce
small deviations already for the lowest vibrational states but
become more and more pronounced for the higher states and
especially for the A constants.

Sizeable deviations are expected between the variational
vibrationally averaged and the experimental effective C rota-
tional constants due to the approximations detailed in eqs
12-14. Furthermore, the agreement between the computed and
experimental A and B constants is not expected to be perfect
either, as the experimental constants contain contributions not
only from vibrations but also from centrifugal distortion,
electronic, and nonadiabatic effects, none of them taken into
account here. Centrifugal distortion effects, though still small,
are relatively large for the water molecule.71 Electronic
contributions, related to the rotational g-factors,117 are usually
considered to be small, they are on the order of 100-300
MHz for water,118 i.e., less than 0.01 cm-1. Nonadiabatic
effects have not been considered explicitly either, and their
contribution to rotational constants is still hard to ascertain.
It is only noted here that using atomic masses in the
computations of the average rotational constants corresponds
to absorbing some part of the nonadiabatic effect into the
adiabatic approximation. Overall, there is only one case where
theory can point to possible accuracy problems with the
experimental rotational constants, and that concerns the (1 0
2) state of the first decade of D2

16O.

Once the vibrationally averaged rotational constants are
available, one can determine, through eq 5 and linear least-
squares, the vibration-rotation interaction constants of different

TABLE 4: Vibrationally Averaged Rotational Constants, in cm-1, of the H2
16O Molecule up to and Including the First Decadea

〈A〉V 〈B〉V 〈C〉V
P V EV VAR expt VAR expt VAR expt

0 (0 0 0) 4638.31 27.8656 27.8778,60 27.878771 14.5042 14.5092,60 14.511571 9.2964 9.2869,60 9.288071

1 (0 1 0) 1595.08 31.1105 31.130172 14.6658 14.687072 9.3565 9.129572

2 (0 2 0) 3152.20 35.5359 35.5867(30)61 14.8083 14.8415(24)61 9.4272 8.9745(21)61

(1 0 0) 3657.05 27.1464 27.1221(26)61 14.2899 14.3048(23)61 9.1186 9.1046(20)61

(0 0 1) 3755.73 26.6402 26.6480(23)61 14.4093 14.4313(8)61 8.9835 9.1382(5)61

3 (0 3 0) 4667.57 42.0170 42.132(22)62 14.9249 14.9714(59)62 9.5138 8.8350(27)62

(1 1 0) 5235.49 30.2456 30.171(15)62 14.4629 14.4729(60)62 9.1759 8.9519(27)62

(0 1 1) 5331.51 29.5079 29.5226(36)62 14.5975 14.6136(15)62 9.0361 8.9931(12)62

4 (0 4 0) 6135.08 52.8241 15.0023 9.6255
(1 2 0) 6775.96 34.4766 34.5079(5)63 14.6132 14.6332(3)63 9.2420 8.7921(3)63

(0 2 1) 6872.15 33.3206 33.3571(3)63 14.7715 14.7817(2)63 9.0967 8.8308(1)63

(2 0 0) 7201.19 26.3466 26.3627(3)63 14.1044 14.1732(2)63 8.9108 8.9542(1)63

(1 0 1) 7249.22 25.9603 25.9634(2)63 14.1977 14.1813(1)63 8.8046 8.9050(1)63

(0 0 2) 7444.88 25.6119 25.5749(4)63 14.2758 14.2208(3)63 8.7137 9.0532(2)63

5 (0 5 0) 7543.86 77.3265 73.039664 15.0171 15.27764 9.7822 8.4664

(1 3 0) 8275.08 41.1311 40.829(24)64 14.7367 14.7844(12)64 9.3236 8.6296(8)64

(0 3 1) 8374.77 38.7103 38.7498(41)64 14.9293 14.9540(41)64 9.1698 8.6940(37)64

(2 1 0) 8761.92 29.3371 29.3633(35)64 14.2950 14.2849(12)64 8.9634 8.7890(14)64

(1 1 1) 8807.03 28.7099 28.7528(21)64 14.3995 14.3981(8)64 8.8548 8.8212(11)64

(0 1 2) 9000.39 28.2175 28.2152(41)64 14.4829 14.5063(9)64 8.7624 8.8581(6)64

6 (0 6 0) 8872.17 169.598 14.9575 10.0315
(1 4 0) 9725.56 61.0866 14.8221 9.4419
(0 4 1) 9834.76 47.1102 15.0647 9.2622
(2 2 0) 10285.09 33.3045 14.4587 9.0224
(1 2 1) 10329.17 32.3186 14.5798 8.9099
(0 2 2) 10522.47 31.6143 14.6764 8.8157
(3 0 0) 10598.60 25.4058 13.9737 8.6469
(2 0 1) 10612.12 25.2285 14.0148 8.5983
(1 0 2) 10868.41 25.2709 13.9850 8.6234
(0 0 3) 11031.94 24.5367 14.1643 8.4208

a P ) polyad number defined as P ) 2n1 + n2 + 2n3; V ) (n1 n2 n3), approximate normal-mode labeling of the variationally computed
vibrational band origins (VBO); EV ) wavenumber, in cm-1, of the variational VBO; VAR ) variationally computed expectation values, based
on an exact kinetic energy operator and the purely ab initio adiabatic CVRQD PES; expt ) experimental results from the literature. The
underlined digits are not converged due to the fact that the A and B functions in the Eckart frame, where the reference configuration is the bent
equilibrium structure, are singular at linear geometries. While the nuclear motion computations utilized nuclear masses, computation of the
effective rotational constants was based on atomic masses. The reference structure chosen for the Eckart frame corresponds to the equilibrium
structural parameters of the CVRQD PES and its orientation to the principal axes system with the molecule lying in the x-y plane.
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order. Here only the constants referring to the A and B rotational
constants are considered.

For prototypical semirigid molecules, for which there is at least
2 orders of magnitude difference between vibration-rotation
interaction constants of consecutive order, the lowest-order

vibration-rotation interaction constants can be computed straight-
forwardly from the vibrationally averaged rotational constants of
the lowest vibrational states. The simplest approach to determine
the three RB constants of water, for example, assumes that all
higher-order constants are zero and uses the following four averaged

TABLE 5: Vibrationally Averaged Rotational Constants, in cm-1, of the D2
16O Molecule up to and Including the First Decadea

〈A〉V 〈B〉V 〈C〉V
P V EV VAR expt VAR expt VAR expt

0 (0 0 0) 3389.96 15.4139 15.4200,65,67 15.384660 7.2682 7.2730,65,67 7.271660 4.8512 4.8453,65,67 4.845860

1 (0 1 0) 1178.67 16.6281 16.634073 7.3330 7.338773 4.8706 4.789773

2 (0 2 0) 2337.28 18.1248 18.1427(8)65 7.3923 7.4017(7)65 4.8917 4.7341(2)65

(1 0 0) 2671.36 15.1859 15.1801(6)65 7.1779 7.1802(7)65 4.7852 4.7800(3)65

(0 0 1) 2787.31 14.8831 14.8870(4)65 7.2389 7.2452(1)65 4.7351 4.7926(2)65

3 (0 3 0) 3474.84 20.0255 20.0336(1),66 20.0523(20)67 7.4455 7.45376(3),66 7.4503(9)67 4.9153 4.67916(2),66 4.6875(13)67

(1 1 0) 3841.52 16.3767 16.3644(18)67 7.2472 7.2570(9)67 4.8046 4.7145(13)67

(0 1 1) 3955.96 15.9864 15.9899(1)67 7.3107 7.317967 4.7527 4.739167

4 (0 4 0) 4589.89 22.5314 22.5728(9)68 7.4912 7.5268 4.9423 4.6368

(1 2 0) 4991.18 17.8390 17.8047(4)68 7.3090 7.3144(3)68 4.8252 4.6639(3)68

(0 2 1) 5105.59 17.3271 17.3237(4)68 7.3774 7.3822(7)68 4.7716 4.6823(6)68

(2 0 0) 5291.01 14.9443 14.9726(8)68 7.0925 7.1266(8)68 4.7162 4.7070(8)68

(1 0 1) 5373.01 14.6634 14.6718(5)68 7.1498 7.1630(8)68 4.6687 4.7279(6)68

(0 0 2) 5528.76 14.4030 14.3682(8)68 7.2026 7.1902(8)68 4.6254 4.7498(7)68

5 (0 5 0) 5680.29 26.0088 7.5270 4.9742
(1 3 0) 6119.54 19.6986 19.6994(4)69 7.3636 7.3696(2)69 4.8478 4.6157(3)69

(0 3 1) 6235.46 19.0030 19.0159(4)69 7.4393 7.4428(2)69 4.7924 4.6249(3)69

(2 1 0) 6452.74 16.1119 16.1201(3)69 7.1672 7.1698(1)69 4.7357 4.6659(4)69

(1 1 1) 6532.78 15.7510 15.7615(3)69 7.2272 7.2293(1)69 4.6866 4.6727(7)69

(0 1 2) 6686.65 15.4141 15.4158(3)69 7.2806 7.2877(2)69 4.6417 4.6790(5)69

6 (0 6 0) 6742.90 31.2393 7.5493 5.0131
(1 4 0) 7225.23 22.1813 7.4098 4.8738
(0 4 1) 7344.43 21.1694 7.4957 4.8161
(2 2 0) 7593.37 17.5369 17.4564(108)70 7.2315 7.2537(45)70 4.7554 4.6333(70)70

(1 2 1) 7672.80 17.0597 17.0486(10)70 7.2963 7.3125(3)70 4.7048 4.6065(2)70

(0 2 2) 7826.27 16.6189 16.8579(32)70 7.3522 7.2921(69)70 4.6585 4.6991(58)70

(3 0 0) 7851.63 14.6674 14.3544(338)70 7.0205 6.9561(70)70 4.6387 4.6133(39)70

(2 0 1) 7898.31 14.4246 14.3006(164)70 7.0686 7.1127(27)70 4.5976 4.6195(31)70

(1 0 2) 8052.91 14.2612 14.5518(301)70 7.0995 7.1866(49)70 4.5715 4.7439(55)70

(0 0 3) 8219.17 13.9425 14.0405(163)70 7.1654 7.1667(27)70 4.5174 4.6732(58)70

a See footnote a to Table 4.

TABLE 6: Low-Order Vibration-Rotation Interaction Constants (Eq 5), in cm-1, the H2
16O Moleculea

const expt60 VPT2119 VAR1 VAR2 VAR3 VAR4

R1
A 0.750 0.685 0.719 0.941(353) 0.880(117) 0.417(151)

R2
A -2.941 -2.617 -3.245 -3.618(188) -3.466(119) -2.516(129)

R3
A 1.253 1.159 1.225 1.447(353) 1.306(119) 1.176(152)

R1
B 0.238 0.221 0.214 0.213(5) 0.197(7) 0.259(29)

R2
B -0.160 -0.156 -0.162 -0.154(3) -0.179(7) -0.145(25)

R3
B 0.078 0.099 0.095 0.094(5) 0.117(7) 0.056(29)

R1
C 0.202 0.177 0.178 0.181(3) 0.200(6)

R2
C 0.139 0.147 -0.060 -0.063(2) -0.051(6)

R3
C 0.145 0.143 0.313 0.316(3) 0.287(6)

γ11
A ; γ11

B -0.078(39); 0.021(7)
γ12

A ; γ12
B -0.283(64); 0.027(12)

γ13
A ; γ13

B 0.095(56); -0.021(11)
γ22

A ; γ22
B 0.556(35); -0.004(7)

γ23
A ; γ23

B -0.404(41); 0.020(8)
γ33

A ; γ33
B 0.067(38); -0.016(7)

a Expt ) experiment; VPT2 ) vibrational perturbation theory carried out to second order; VAR1 ) results based on the inversion of the
information contained in the variationally determined effective rotational constants of the (0 0 0), (0 1 0), (1 0 0), and (0 0 1) vibrational states;
VAR2 ) results based on a least-squares fit of r constants including all variationally determined effective rotational constants corresponding to
P ) 0, 1, and 2; VAR3 ) results based on a least-squares fit of r constants against variationally determined effective rotational constants
reported in Table 4 (altogether 20 states are employed, all those for which all three rotational constants are fully converged); VAR4 ) results
based on a least-squares fit of r and γ constants against variationally determined effective rotational constants reported in Table 4 (altogether
20 states are employed, all those for which all three rotational constants are fully converged). In the VAR2, VAR3, and VAR4 fittings the
equilibrium rotational constants were fixed at their CVRQD values, Ae ) 27.3853, Be ) 14.5805, and Ce ) 9.5148 cm-1, and the resulting
standard errors are given in parentheses. As expected, the root-mean-square error, in cm-1, of the VAR3 fit, {0.601, 0.037} for {A, B}
decreases to {0.118, 0.023} for VAR4.
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rotational constants: B000, B100, B010, and B001. The r constants
computed this way (see the VAR1 results of Table 6) agree
reasonably well with the experimental and VPT2 values of previous
studies.119 Nevertheless, deviations on the order of 10% are not
uncommon.

Use of the many average rotational constants determined in
this study yields information also on the γ constants and even
higher-order vibration-rotation parameters could be determined.
The γ constants of water have never been determined before.
From the many tests performed during least-squares fitting it
became clear that the vibration-rotation interaction constants,
depending on the use of more or less variationally computed
rotational constants, can take values in a rather substantial range.
Some of these results are detailed in Table 6. Clearly, for water,
for which differences between the B, r, and γ constants are
often less than 10-fold, the least-squares procedure does not
result in unique low-order vibration-rotation interaction constants.

5. Conclusions

In some influential publications and related lectures, Rich-
ards120 and then Schaefer121,122 categorized the development of
computational quantum chemistry into three ages. Within this
scheme, quantum chemistry was basically identified, as it is still
usually done, with electronic structure theory and thus only the

developments of electronic structure theory were considered
when the successes of quantum chemistry were discussed. Then,
the year 1970 was chosen as the start of the third age of quantum
chemistry whereby theory, again, electronic structure theory,
has become able to make quantitative predictions and thus
challenge (or even overrule) experiments or their interpretation.
Of course, the other important branch of quantum chemistry
deals with the motion of the nuclei within the molecule,
observed through molecular (vibration-rotation) spectra or the
realization of chemical reactions. While electronic structure
theory has been quite successful in yielding quantities which
can be related, usually at an elementary level, to experimental
observables, quantitative agreement with experiments can only
be expected when the motions of the nuclei are also considered.
It is hoped in this context that the fourth age of quantum
chemistry will arrive soon, whereby quantum chemistry would
quantitatively bridge the gap between “effective”, experimental
observables and “equilibrium” computed quantities at even
elevated temperatures of interest.

This study, with the help of state-of-the-art, third-age
electronic structure theory together with variational nuclear
motion computations, constitutes a step toward fourth-age
methodology by computing thermally averaged structural and
vibrationally averaged spectroscopic constants for two isoto-

Figure 1. Variationally computed expectation values of the bond angles of H2
16O and D2

16O as a function of the vibrational band origins (left) and
the bending vibrational states (0 n2 0) (right). The energies are relative to the zero-point levels, i.e., 4638 and 3390 cm-1 for H2

16O and D2
16O,

respectively. On the left panel all the vibrational states are shown up to 15 500 cm-1.

Figure 2. Temperature dependence of the length of the average internuclear (rg) and inverse internuclear (ra) bonded and nonbonded distances of
the H2

16O and D2
16O molecules computed variationally using all rotational-vibrational states populated significantly at a given temperature T.
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pologues of the water molecule, H2
16O and D2

16O. The usually
fully converged variational nuclear motion computations in-
volved exact kinetic energy operators and the high-quality
adiabatic CVRQD PESs. The most important results of this
study can be summarized as follows:

(1) The structural quantities computed include several dif-
ferent vibrational averages. As suggested by simple perturbative
arguments and confirmed here variationally, the order of the
distances is 〈r3〉1/3 > 〈r2〉1/2 > 〈r〉 > 〈r-1〉-1 > 〈r-2〉-1/2 > 〈r-3〉-1/3

> re. Other simple PT formulas, like 〈x〉 ) 3/2a〈x2〉 and ra ) rg

- lg
2/r, where x ) r - re and lg

2 ) 〈x2〉 - 〈x〉2, have also been
confirmed. One of the most remarkable variations among the
computed structural parameters upon excitation is that of the
average bond angle, which shows a very regular behavior and
starts decreasing for excitation energies beyond the barrier to
linearity (see Figure 1).

(2) Precise structural data, including average internuclear (rg)
and inverse internuclear (ra) distances, root-mean-square (rms)
amplitudes (lg), and κ anharmonicity parameters, all usually
refined in GED structural analyses, have been determined in
the temperature range of 0-1500 K for the water isotopologues
H2

16O and D2
16O. The values obtained show excellent agreement

with most results from an old GED experiment performed at
302 K but are expected to be considerably more accurate. While
it would be nice if in the future GED could be used to check
the validity of the structural parameters derived here over the
whole temperature range, this is not expected due to the low
scattering power of the H (and D) atoms. Of course, the same
procedure applied here to water can straightforwardly be
extended to larger systems and should supplement problematic
GED experiments, especially at higher temperatures.

Figure 3. Temperature dependence of the rms amplitude (lg) and the anharmonicity (κ) parameters (left panel) and the rotational contributions to
them (right panel) for H2

16O and D2
16O.

Figure 4. Temperature dependence of the rotational contributions to
the rg(OH) and rg(HH) parameters of H2

16O. The linear fits, δrg ) σT,
gave σ parameters of 2.06 × 10-6 and -3.6 × 10-7 Å/K for δrg(OH)
and δrg(HH), respectively.
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(3) Constrained vibrational (J ) 0) averaging does not yield
correct bond length increases even over a rather large temper-
ature range. The distance corrections due to rotations are
substantial but turn out to be linearly dependent on T, as
suggested by classical mechanics. Thus, the centrifugal distortion
correction can be treated perfectly well through a few simple
computations as only the linear factor in front of T needs to be
determined. These factors appear to be isotope independent and
positive and negative for the bonded (OH/OD) and nonbonded
(HH/DD) distances, respectively.

(4) General formulas have been derived, allowing the
determination of vibrationally averaged rotational constants
referring to the Eckart frame used by experimental spectrosco-
pists for molecules of arbitrary size. The simplifications yielding
such effective rotational constants are given clearly and
explicitly. In general, these vibrationally averaged rotational
constants are not the same as the effective rotational constants
determined by spectroscopists fitting effective Hamiltonians to
rotational line information. A small part of the difference, on
the order of 0.01-0.05 cm-1, comes from the neglect of certain
rotational, electronic, and nonadiabatic effects. The most
important part, however, comes from the neglect of terms in
the effective rotational Hamiltonian derived for a given vibra-
tional state. It is expected that a closer correspondence between
variational and spectroscopic effective spectroscopic constants
can be worked out in the near future. As to water, the
shortcomings of the present theoretical treatment affect the
comparison for the C but not for the A and B rotational constants
between experiment and theory. Indeed, we found nice agree-
ment for the latter two sets of constants referring to in-plane
axes for all the states investigated. Apart from the purely bending
states, the average deviation between the variationally vibra-
tionally averaged and the experimental effective rotational
constants is just a few 0.01 cm-1.

(5) The fact that rotational constants can be derived for a
large number of vibrational states variationally opens a way to
determine vibration-rotation interaction constants of different
order variationally. It is expected that once perturbative formulas
will be used to determine not only so-called r but also γ
constants, this possibility for comparison should prove il-
luminating. As to water, it is clear that the usually required 2
orders of magnitude difference in the rotational and vibration-
rotation constants does not hold. Thus, while this study yielded
the first set of γ constants for H2

16O, the vibration-rotation
constants can not be determined uniquely and precisely as their
values depend strongly on the number and quality of information
used during their determination.
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